Serveur d'exploration Santé et pratique musicale

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Behavioral Quantification of Audiomotor Transformations in Improvising and Score-Dependent Musicians.

Identifieur interne : 000C70 ( Main/Exploration ); précédent : 000C69; suivant : 000C71

Behavioral Quantification of Audiomotor Transformations in Improvising and Score-Dependent Musicians.

Auteurs : Robert Harris [Pays-Bas] ; Peter Van Kranenburg [Pays-Bas] ; Bauke M. De Jong [Pays-Bas]

Source :

RBID : pubmed:27835631

Descripteurs français

English descriptors

Abstract

The historically developed practice of learning to play a music instrument from notes instead of by imitation or improvisation makes it possible to contrast two types of skilled musicians characterized not only by dissimilar performance practices, but also disparate methods of audiomotor learning. In a recent fMRI study comparing these two groups of musicians while they either imagined playing along with a recording or covertly assessed the quality of the performance, we observed activation of a right-hemisphere network of posterior superior parietal and dorsal premotor cortices in improvising musicians, indicating more efficient audiomotor transformation. In the present study, we investigated the detailed performance characteristics underlying the ability of both groups of musicians to replicate music on the basis of aural perception alone. Twenty-two classically-trained improvising and score-dependent musicians listened to short, unfamiliar two-part excerpts presented with headphones. They played along or replicated the excerpts by ear on a digital piano, either with or without aural feedback. In addition, they were asked to harmonize or transpose some of the excerpts either to a different key or to the relative minor. MIDI recordings of their performances were compared with recordings of the aural model. Concordance was expressed in an audiomotor alignment score computed with the help of music information retrieval algorithms. Significantly higher alignment scores were found when contrasting groups, voices, and tasks. The present study demonstrates the superior ability of improvising musicians to replicate both the pitch and rhythm of aurally perceived music at the keyboard, not only in the original key, but also in other tonalities. Taken together with the enhanced activation of the right dorsal frontoparietal network found in our previous fMRI study, these results underscore the conclusion that the practice of improvising music can be associated with enhanced audiomotor transformation in response to aurally perceived music.

DOI: 10.1371/journal.pone.0166033
PubMed: 27835631
PubMed Central: PMC5105996


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Behavioral Quantification of Audiomotor Transformations in Improvising and Score-Dependent Musicians.</title>
<author>
<name sortKey="Harris, Robert" sort="Harris, Robert" uniqKey="Harris R" first="Robert" last="Harris">Robert Harris</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>BCN Neuroimaging Center, University of Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>BCN Neuroimaging Center, University of Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
<orgName type="university">Université de Groningue</orgName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Prince Claus Conservatoire, Hanze University of Applied Sciences, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Prince Claus Conservatoire, Hanze University of Applied Sciences, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Van Kranenburg, Peter" sort="Van Kranenburg, Peter" uniqKey="Van Kranenburg P" first="Peter" last="Van Kranenburg">Peter Van Kranenburg</name>
<affiliation wicri:level="3">
<nlm:affiliation>Meertens Institute, Amsterdam, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Meertens Institute, Amsterdam</wicri:regionArea>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="De Jong, Bauke M" sort="De Jong, Bauke M" uniqKey="De Jong B" first="Bauke M" last="De Jong">Bauke M. De Jong</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>BCN Neuroimaging Center, University of Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>BCN Neuroimaging Center, University of Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
<orgName type="university">Université de Groningue</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27835631</idno>
<idno type="pmid">27835631</idno>
<idno type="doi">10.1371/journal.pone.0166033</idno>
<idno type="pmc">PMC5105996</idno>
<idno type="wicri:Area/Main/Corpus">000A77</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A77</idno>
<idno type="wicri:Area/Main/Curation">000A77</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A77</idno>
<idno type="wicri:Area/Main/Exploration">000A77</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Behavioral Quantification of Audiomotor Transformations in Improvising and Score-Dependent Musicians.</title>
<author>
<name sortKey="Harris, Robert" sort="Harris, Robert" uniqKey="Harris R" first="Robert" last="Harris">Robert Harris</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>BCN Neuroimaging Center, University of Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>BCN Neuroimaging Center, University of Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
<orgName type="university">Université de Groningue</orgName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Prince Claus Conservatoire, Hanze University of Applied Sciences, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Prince Claus Conservatoire, Hanze University of Applied Sciences, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Van Kranenburg, Peter" sort="Van Kranenburg, Peter" uniqKey="Van Kranenburg P" first="Peter" last="Van Kranenburg">Peter Van Kranenburg</name>
<affiliation wicri:level="3">
<nlm:affiliation>Meertens Institute, Amsterdam, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Meertens Institute, Amsterdam</wicri:regionArea>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="De Jong, Bauke M" sort="De Jong, Bauke M" uniqKey="De Jong B" first="Bauke M" last="De Jong">Bauke M. De Jong</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>BCN Neuroimaging Center, University of Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>BCN Neuroimaging Center, University of Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
<orgName type="university">Université de Groningue</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acoustic Stimulation (MeSH)</term>
<term>Adult (MeSH)</term>
<term>Auditory Cortex (anatomy & histology)</term>
<term>Auditory Cortex (physiology)</term>
<term>Auditory Perception (physiology)</term>
<term>Brain Mapping (methods)</term>
<term>Humans (MeSH)</term>
<term>Imagination (physiology)</term>
<term>Learning (physiology)</term>
<term>Magnetic Resonance Imaging (methods)</term>
<term>Male (MeSH)</term>
<term>Middle Aged (MeSH)</term>
<term>Motor Cortex (anatomy & histology)</term>
<term>Motor Cortex (physiology)</term>
<term>Music (MeSH)</term>
<term>Nerve Net (anatomy & histology)</term>
<term>Nerve Net (physiology)</term>
<term>Professional Competence (MeSH)</term>
<term>Psychomotor Performance (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adulte (MeSH)</term>
<term>Adulte d'âge moyen (MeSH)</term>
<term>Apprentissage (physiologie)</term>
<term>Cartographie cérébrale (méthodes)</term>
<term>Compétence professionnelle (MeSH)</term>
<term>Cortex auditif (anatomie et histologie)</term>
<term>Cortex auditif (physiologie)</term>
<term>Cortex moteur (anatomie et histologie)</term>
<term>Cortex moteur (physiologie)</term>
<term>Humains (MeSH)</term>
<term>Imagerie par résonance magnétique (méthodes)</term>
<term>Imagination (physiologie)</term>
<term>Musique (MeSH)</term>
<term>Mâle (MeSH)</term>
<term>Perception auditive (physiologie)</term>
<term>Performance psychomotrice (physiologie)</term>
<term>Réseau nerveux (anatomie et histologie)</term>
<term>Réseau nerveux (physiologie)</term>
<term>Stimulation acoustique (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomie et histologie" xml:lang="fr">
<term>Cortex auditif</term>
<term>Cortex moteur</term>
<term>Réseau nerveux</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Auditory Cortex</term>
<term>Motor Cortex</term>
<term>Nerve Net</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Brain Mapping</term>
<term>Magnetic Resonance Imaging</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Cartographie cérébrale</term>
<term>Imagerie par résonance magnétique</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Apprentissage</term>
<term>Cortex auditif</term>
<term>Cortex moteur</term>
<term>Imagination</term>
<term>Perception auditive</term>
<term>Performance psychomotrice</term>
<term>Réseau nerveux</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Auditory Cortex</term>
<term>Auditory Perception</term>
<term>Imagination</term>
<term>Learning</term>
<term>Motor Cortex</term>
<term>Nerve Net</term>
<term>Psychomotor Performance</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Acoustic Stimulation</term>
<term>Adult</term>
<term>Humans</term>
<term>Male</term>
<term>Middle Aged</term>
<term>Music</term>
<term>Professional Competence</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adulte</term>
<term>Adulte d'âge moyen</term>
<term>Compétence professionnelle</term>
<term>Humains</term>
<term>Musique</term>
<term>Mâle</term>
<term>Stimulation acoustique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The historically developed practice of learning to play a music instrument from notes instead of by imitation or improvisation makes it possible to contrast two types of skilled musicians characterized not only by dissimilar performance practices, but also disparate methods of audiomotor learning. In a recent fMRI study comparing these two groups of musicians while they either imagined playing along with a recording or covertly assessed the quality of the performance, we observed activation of a right-hemisphere network of posterior superior parietal and dorsal premotor cortices in improvising musicians, indicating more efficient audiomotor transformation. In the present study, we investigated the detailed performance characteristics underlying the ability of both groups of musicians to replicate music on the basis of aural perception alone. Twenty-two classically-trained improvising and score-dependent musicians listened to short, unfamiliar two-part excerpts presented with headphones. They played along or replicated the excerpts by ear on a digital piano, either with or without aural feedback. In addition, they were asked to harmonize or transpose some of the excerpts either to a different key or to the relative minor. MIDI recordings of their performances were compared with recordings of the aural model. Concordance was expressed in an audiomotor alignment score computed with the help of music information retrieval algorithms. Significantly higher alignment scores were found when contrasting groups, voices, and tasks. The present study demonstrates the superior ability of improvising musicians to replicate both the pitch and rhythm of aurally perceived music at the keyboard, not only in the original key, but also in other tonalities. Taken together with the enhanced activation of the right dorsal frontoparietal network found in our previous fMRI study, these results underscore the conclusion that the practice of improvising music can be associated with enhanced audiomotor transformation in response to aurally perceived music.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27835631</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>07</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Behavioral Quantification of Audiomotor Transformations in Improvising and Score-Dependent Musicians.</ArticleTitle>
<Pagination>
<MedlinePgn>e0166033</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0166033</ELocationID>
<Abstract>
<AbstractText>The historically developed practice of learning to play a music instrument from notes instead of by imitation or improvisation makes it possible to contrast two types of skilled musicians characterized not only by dissimilar performance practices, but also disparate methods of audiomotor learning. In a recent fMRI study comparing these two groups of musicians while they either imagined playing along with a recording or covertly assessed the quality of the performance, we observed activation of a right-hemisphere network of posterior superior parietal and dorsal premotor cortices in improvising musicians, indicating more efficient audiomotor transformation. In the present study, we investigated the detailed performance characteristics underlying the ability of both groups of musicians to replicate music on the basis of aural perception alone. Twenty-two classically-trained improvising and score-dependent musicians listened to short, unfamiliar two-part excerpts presented with headphones. They played along or replicated the excerpts by ear on a digital piano, either with or without aural feedback. In addition, they were asked to harmonize or transpose some of the excerpts either to a different key or to the relative minor. MIDI recordings of their performances were compared with recordings of the aural model. Concordance was expressed in an audiomotor alignment score computed with the help of music information retrieval algorithms. Significantly higher alignment scores were found when contrasting groups, voices, and tasks. The present study demonstrates the superior ability of improvising musicians to replicate both the pitch and rhythm of aurally perceived music at the keyboard, not only in the original key, but also in other tonalities. Taken together with the enhanced activation of the right dorsal frontoparietal network found in our previous fMRI study, these results underscore the conclusion that the practice of improvising music can be associated with enhanced audiomotor transformation in response to aurally perceived music.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Harris</LastName>
<ForeName>Robert</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>BCN Neuroimaging Center, University of Groningen, Groningen, The Netherlands.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Prince Claus Conservatoire, Hanze University of Applied Sciences, Groningen, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>van Kranenburg</LastName>
<ForeName>Peter</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Meertens Institute, Amsterdam, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>de Jong</LastName>
<ForeName>Bauke M</ForeName>
<Initials>BM</Initials>
<AffiliationInfo>
<Affiliation>Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>BCN Neuroimaging Center, University of Groningen, Groningen, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>11</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000161" MajorTopicYN="N">Acoustic Stimulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001303" MajorTopicYN="N">Auditory Cortex</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001307" MajorTopicYN="N">Auditory Perception</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001931" MajorTopicYN="N">Brain Mapping</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007092" MajorTopicYN="N">Imagination</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007858" MajorTopicYN="N">Learning</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008279" MajorTopicYN="N">Magnetic Resonance Imaging</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009044" MajorTopicYN="N">Motor Cortex</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009146" MajorTopicYN="N">Music</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009415" MajorTopicYN="N">Nerve Net</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011361" MajorTopicYN="N">Professional Competence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011597" MajorTopicYN="N">Psychomotor Performance</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>02</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>10</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>7</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27835631</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0166033</ArticleId>
<ArticleId IdType="pii">PONE-D-16-07289</ArticleId>
<ArticleId IdType="pmc">PMC5105996</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Neurophysiol. 2002 Sep;88(3):1451-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12205165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Neurosci. 2008 Dec;28(11):2352-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19046375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroreport. 2002 Dec 3;13(17):2285-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12488812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Q J Exp Psychol A. 2005 Nov;58(8):1376-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16365945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2003 Sep;20(1):71-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14527571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007 Feb 28;2(2):e259</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17327919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Learn Mem. 1994 Nov-Dec;1(4):217-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10467599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Learn Mem. 2001 Sep-Oct;8(5):295-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11584077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2001 Aug;11(8):754-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11459765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Learn Mem. 2007 Feb;87(2):236-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17046293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2006 Apr 15;30(3):917-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16380270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Jul 3;257(5066):106-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1621084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropsychologia. 2014 May;57:50-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24613759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cogn Sci. 2012 May;16(5):262-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22516238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Psychol (Amst). 2012 Jan;139(1):166-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22100135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroreport. 2008 Feb 12;19(3):361-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18303582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Q J Exp Psychol (Hove). 2013;66(1):37-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22712516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Percept Psychophys. 1994 Sep;56(3):301-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7971130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Psychol Gen. 1991 Sep;120(3):235-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1836490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10383-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24982142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cogn Neurosci. 2005 Oct;17(10):1578-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16269098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2011 Oct 27;12(12):739-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22033537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cogn Neurosci. 2010 Apr;22(4):775-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19366283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mem Cognit. 2003 Jan;31(1):51-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12699143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2458-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16461904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Conscious Cogn. 2011 Dec;20(4):1232-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21458298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropsychologia. 2012 Jun;50(7):1432-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22414595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 2007 Aug 3;1161:65-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17603027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cognition. 2004 May-Jun;92(1-2):231-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15037131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Psychol Res. 2011 Mar;75(2):122-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20556421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2013 Mar;23(3):660-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22419678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 2015 Oct 22;1624:253-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26206300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1970 Mar;48(3):443-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5420325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cogn Neurosci. 2013 Feb;25(2):313-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23163413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cogn Neurosci. 2005 Feb;17(2):282-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15811240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cogn Psychol. 2004 Mar;48(2):127-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14732409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cogn Neurosci. 2012 Apr;24(4):933-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21861686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2010 Jun;20(6):1350-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19789184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2009 May 6;29(18):5832-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19420250</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pays-Bas</li>
</country>
<region>
<li>Groningue (province)</li>
<li>Hollande-Septentrionale</li>
</region>
<settlement>
<li>Amsterdam</li>
<li>Groningue</li>
</settlement>
<orgName>
<li>Université de Groningue</li>
</orgName>
</list>
<tree>
<country name="Pays-Bas">
<region name="Groningue (province)">
<name sortKey="Harris, Robert" sort="Harris, Robert" uniqKey="Harris R" first="Robert" last="Harris">Robert Harris</name>
</region>
<name sortKey="De Jong, Bauke M" sort="De Jong, Bauke M" uniqKey="De Jong B" first="Bauke M" last="De Jong">Bauke M. De Jong</name>
<name sortKey="De Jong, Bauke M" sort="De Jong, Bauke M" uniqKey="De Jong B" first="Bauke M" last="De Jong">Bauke M. De Jong</name>
<name sortKey="Harris, Robert" sort="Harris, Robert" uniqKey="Harris R" first="Robert" last="Harris">Robert Harris</name>
<name sortKey="Harris, Robert" sort="Harris, Robert" uniqKey="Harris R" first="Robert" last="Harris">Robert Harris</name>
<name sortKey="Van Kranenburg, Peter" sort="Van Kranenburg, Peter" uniqKey="Van Kranenburg P" first="Peter" last="Van Kranenburg">Peter Van Kranenburg</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SanteMusiqueV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C70 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C70 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SanteMusiqueV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27835631
   |texte=   Behavioral Quantification of Audiomotor Transformations in Improvising and Score-Dependent Musicians.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27835631" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SanteMusiqueV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Mar 8 15:23:44 2021. Site generation: Mon Mar 8 15:23:58 2021